Computational prediction of type III secreted proteins from gram-negative bacteria
نویسندگان
چکیده
منابع مشابه
Correction: Prediction of Type III Secretion Signals in Genomes of Gram-Negative Bacteria
BACKGROUND Pathogenic bacteria infecting both animals as well as plants use various mechanisms to transport virulence factors across their cell membranes and channel these proteins into the infected host cell. The type III secretion system represents such a mechanism. Proteins transported via this pathway ("effector proteins") have to be distinguished from all other proteins that are not export...
متن کاملSequence-Based Prediction of Type III Secreted Proteins
The type III secretion system (TTSS) is a key mechanism for host cell interaction used by a variety of bacterial pathogens and symbionts of plants and animals including humans. The TTSS represents a molecular syringe with which the bacteria deliver effector proteins directly into the host cell cytosol. Despite the importance of the TTSS for bacterial pathogenesis, recognition and targeting of t...
متن کاملEffective Identification of Gram-Negative Bacterial Type III Secreted Effectors Using Position-Specific Residue Conservation Profiles
BACKGROUND Type III secretion systems (T3SSs) are central to the pathogenesis and specifically deliver their secreted substrates (type III secreted proteins, T3SPs) into host cells. Since T3SPs play a crucial role in pathogen-host interactions, identifying them is crucial to our understanding of the pathogenic mechanisms of T3SSs. This study reports a novel and effective method for identifying ...
متن کاملSOSUI-GramN: high performance prediction for sub-cellular localization of proteins in Gram-negative bacteria
A predictive software system, SOSUI-GramN, was developed for assessing the subcellular localization of proteins in Gram-negative bacteria. The system does not require the sequence homology data of any known sequences; instead, it uses only physicochemical parameters of the N- and C-terminal signal sequences, and the total sequence. The precision of the prediction system for subcellular localiza...
متن کاملPrediction of lipoprotein signal peptides in Gram-negative bacteria.
A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2010
ISSN: 1471-2105
DOI: 10.1186/1471-2105-11-s1-s47